July 18, 2024
  • Li, X. et al. EEG based emotion recognition: A tutorial and review. ACM Comput. Surv. 55(4), 1–57 (2022).

    Article 

    Google Scholar 

  • Levenson, R., Lwi, S., Brown, C., Ford, B., Otero, M. & Verstaen, A. Emotion in Handbook of Psychophysiology, 4th ed. Cambridge University Press: Cambridge, UK, 444–464 (2016).

  • Bouhlal, M., Aarika, K., Abdelouahid, R. A., Elfilali, S. & Benlahmar, E. Emotions recognition as innovative tool for improving students’ performance and learning approaches. Procedia Comput. Sci. 175, 597–602 (2020).

    Article 

    Google Scholar 

  • Moontaha, S., Schumann, F. E. F. & Arnrich, B. Online learning for wearable EEG-based emotion classification. Sensors. 23(5), 2387 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Presti, P. et al. Measuring arousal and valence generated by the dynamic experience of architectural forms in virtual environments. Sci. Rep. 12(1), 13376. (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casson, A. J. Wearable EEG and beyond. Biomed. Eng. Lett. 9(1), 53–71. (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suhaimi, N. S., Mountstephens, J. & Teo, J. EEG-based emotion recognition: A state-of-the-art review of current trends and opportunities. Comput. Intell. Neurosci. (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krigolson, O. E. et al. Using muse: Rapid mobile assessment of brain performance. Front. Neurosci. 15, 634147. (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vekety, B., Logemann, A. & Takacs, Z. K. Mindfulness practice with a brain-sensing device improved cognitive functioning of elementary school children: An exploratory pilot study. Brain Sci. 12(1), 103. (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russell, J. A. A circumplex model of affect. J. Personal. Soc. Psychol. 39(6), 1161 (1980).

    Article 

    Google Scholar 

  • Brown, L., Grundlehner, B. & Penders, J. Towards wireless emotional valence detection from EEG. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2188–2191 (2011).

  • Gonzalez, H. A., Yoo, J., and Elfadel, I. M. EEG-based emotion detection using unsupervised transfer learning. 2019 41st Annual İnternational Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2019.

  • Li, Q., Zheng, W. L., Zhu, Y. & Lu, B. L. Emotion recognition from EEG signals using multidimensional information in EMD domain. IEEE Transact. Affect. Comput. 10(2), 191–202 (2019).

    Google Scholar 

  • Razzouk, R. & Shute, V. What is design thinking and why is it important?. Rev. Educ. Res. 82(3), 330–348 (2012).

    Article 

    Google Scholar 

  • Cross, N. Forty years of design research. Des. Stud. 1(28), 1–4 (2007).

    Article 

    Google Scholar 

  • Rowe, P. G. Design thinking. MIT press (1991).

  • Sargent, P. Design science or nonscience. Des. Stud. 15(4), 389–402 (1994).

    Article 

    Google Scholar 

  • Simon, H. A. The structure of ill structured problems. Artif. Intell. 4(3–4), 181–201 (1973).

    Article 

    Google Scholar 

  • Rittel, H. W. & Webber, M. M. Dilemmas in a general theory of planning. Policy Sci. 4(2), 155–169 (1973).

    Article 

    Google Scholar 

  • Vartanian, O. et al. Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. J. Environ. Psychol. 41, 10–18 (2015).

    Article 

    Google Scholar 

  • Vartanian, O. et al. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. 110(supplment_2), 10446–10453 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin, Y. B. et al. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment. Neurosci. Lett. 584, 28–32 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seitamaa-Hakkarainen, P., Huotilainen, M., Mäkelä, M., Groth, C., & Hakkarainen, K. How can neuroscience help understand design and craft activity? The promise of cognitive neuroscience in design studies. FORMakademisk. 9(1) (2016).

  • Zhang, W. et al. Neural correlates of appreciating natural landscape and landscape garden: Evidence from an fMRI study. Brain Behav. 9(7), e01335 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vieira, S., Gero, J. S., Delmoral, J., Gattol, V., Fernandes, C., Parente, M., & Fernandes, A. A. The neurophysiological activations of mechanical engineers and industrial designers while designing and problem-solving. Design Science. 6 (2020).

  • Zavotka, S. L. Analysis of three dimensional computer graphics animation to teach spatial skills to interior design students. J. Inter. Des. 12(1), 45–52 (1986).

    Google Scholar 

  • Eggermont, M. J. Biomimetics as problem-solving, creativity and innovation tool in a first year engineering design and communication course. Des. Nat. 4(1), 59–67 (2008).

    Google Scholar 

  • McConnell, M. & Waxman, L. Three-dimensional CAD use in interior design education and practice. J. Inter. Des. 25(1), 16–25 (1999).

    Google Scholar 

  • McLain-Kark, J. & Rawls, S. CAD education in interior design: Computers and the creative process. J. Inter. Des. 14(2), 23–26 (1988).

    Google Scholar 

  • Brandon, L. & McLain-Kark, J. Effects of Hand-Drawing and CAD techniques on design development: A comparison of design merit ratings. J. Inter. Des. 27(2), 26–34 (2001).

    Google Scholar 

  • Prensky, M. Digital natives, digital immigrants part 2: Do they really think differently?. On the Horizon (2001).

  • Ramsøy, T. Z., Friis-Olivarius, M., Jacobsen, C., Jensen, S. B. & Skov, M. Effects of perceptual uncertainty on arousal and preference across different visual domains. J. Neurosci. Psychol. Econom. 5(4), 212 (2012).

    Article 

    Google Scholar 

  • Kirk, U., Skov, M., Hulme, O., Christensen, M. S. & Zeki, S. Modulation of aesthetic value by semantic context: An fMRI study. Neuroimage. 44(3), 1125–1132 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Da Silva, T. H. C. T., Cavalcanti, M. D., De Sá, F. M. F., Marinho, I. N., Cavalcanti, D. D. Q., & Becker, V. Visualization of brainwaves using EEG to map emotions with eye tracking to identify attention in audiovisual workpieces in Proceedings of the Brazilian Symposium on Multimedia and the Web. 381–389 (2022).

  • Dabas, H., Sethi, C., Dua, C., Dalawat, M., & Sethia, D. Emotion classification using EEG signals in Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence. 380–384 (2018).

  • Menezes, M. L. R. et al. Towards emotion recognition for virtual environments: An evaluation of eeg features on benchmark dataset. Personal Ubiquitous Comput. 21, 1003–1013 (2017).

    Article 

    Google Scholar 

  • Basar, M. D., Duru, A. D. & Akan, A. Emotional state detection based on common spatial patterns of EEG. Signal, Image Video Process. 14(3), 473–481 (2020).

    Article 

    Google Scholar 

  • Cao, G., Ma, Y., Meng, X., Gao, Y., & Meng, M. Emotion recognition based on CNN in 2019 Chin. Control Conf. (CCC). 8627–8630 (2019).

  • Al-Nafjan, A., Hosny, M., Al-Wabil, A. & Al-Ohali, Y. Classification of human emotions from electroencephalogram (EEG) signal using deep neural network. Int. J. Adv. Comput. Sci. Appl. 8(9), 419–425 (2017).

    Google Scholar 

  • Zhang, L., Xia, B., Wang, Y., Zhang, W. & Han, Y. A fine-grained approach for EEG-based emotion recognition using clustering and hybrid deep neural networks. Electronics 12, 4717. (2023).

    Article 

    Google Scholar 

  • Asghar, M. A., Khan, M. J., Rizwan, M., Mehmood, R. M. & Kim, S.-H. An innovative multi-model neural network approach for feature selection in emotion recognition using deep feature clustering. Sensors 20, 3765. (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khurana, D. et al. Natural language processing: state of the art, current trends and challenges. Multimed. Tools Appl. 82, 3713–3744 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Clemente, M., Rodríguez, A., Rey, B. & Alcañiz, M. Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Syst. Appl. 41(4), 1584–1592 (2014).

    Article 

    Google Scholar 

  • Cruz-Garza, J. G., Darfler, M., Rounds, J. D., Gao, E. & Kalantari, S. EEG-based investigation of the impact of room size and window placement on cognitive performance. J. Build. Eng. 53, 104540 (2022).

    Article 

    Google Scholar 

  • Darfler, M., Cruz-Garza, J. G. & Kalantari, S. An EEG-based investigation of the effect of perceived observation on visual memory in virtual environments. Brain Sci. 12(2), 269 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ehinger, B. V. et al. Kinesthetic and vestibular information modulate alpha activity during spatial navigation: A mobile EEG study. Front. Human Neurosci. 8, 71 (2014).

    Article 

    Google Scholar 

  • Ergan, S., Radwan, A., Zou, Z., Tseng, H. A. & Han, X. Quantifying human experience in architectural spaces with integrated virtual reality and body sensor networks. J. Comput. Civil Eng. 33(2), 04018062 (2019).

    Article 

    Google Scholar 

  • Jung, D., Kim, D. I. & Kim, N. Bringing nature into hospital architecture: Machine learning-based EEG analysis of the biophilia effect in virtual reality. J. Environ. Psychol. 89, 102033 (2023).

    Article 

    Google Scholar 

  • Kalantari, S., Cruz-Garza, J., Xu, T. B., Mostafavi, A., & Gao, E. Store layout design and consumer response: A behavioural and EEG study. Build. Res. Inform, 1–18 (2023).

  • Kalantari, S. et al. Evaluating the impacts of color, graphics, and architectural features on wayfinding in healthcare settings using EEG data and virtual response testing. J. Environ. Psychol. 79, 101744 (2022).

    Article 

    Google Scholar 

  • Kim, S., Park, H. & Choo, S. Effects of changes to architectural elements on human relaxation-arousal responses: Based on VR and EEG. Int. J. Environ. Res. Public Health 18(8), 4305 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J., Jin, Y., Lu, S., Wu, W. & Wang, P. Building environment information and human perceptual feedback collected through a combined virtual reality (VR) and electroencephalogram (EEG) method. Energy Build. 224, 110259 (2020).

    Article 

    Google Scholar 

  • Llinares, C., Higuera-Trujillo, J. L. & Serra, J. Cold and warm coloured classrooms. Effects on students’ attention and memory measured through psychological and neurophysiological responses. Build. Environ. 196, 107726 (2021).

    Article 

    Google Scholar 

  • Mostafavi, A., Cruz-Garza, J. G. & Kalantari, S. Enhancing lighting design through the investigation of illuminance and correlated color temperature’s effects on brain activity: An EEG-VR approach. J. Build. Eng. 75, 106776 (2023).

    Article 

    Google Scholar 

  • Mostafavi, A., Xu, T. B., & Kalantari, S. Assessing the effects of illuminance and correlated color temperature on emotional responses and lighting preferences using virtual reality. arXiv preprint arXiv:2307.10969 (2023).

  • Rounds, J. D., Cruz-Garza, J. G. & Kalantari, S. Using posterior eeg theta band to assess the effects of architectural designs on landmark recognition in an urban setting. Front. Human Neurosci. 14, 584385 (2020).

    Article 

    Google Scholar 

  • Zhu, B., Cruz-Garza, J. G., Yang, Q., Shoaran, M. & Kalantari, S. Identifying uncertainty states during wayfinding in indoor environments: An EEG classification study. Adv. Eng. Inform. 54, 101718 (2022).

    Article 

    Google Scholar 

  • Vieira, S., Benedek, M., Gero, J., Li, S. & Cascini, G. Design spaces and EEG frequency band power in constrained and open design. Int. J. Des. Creat. Innov. 10(4), 193–221 (2022).

    Google Scholar 

  • Vieira, S. et al. The neurophysiological activations of mechanical engineers and industrial designers while designing and problem-solving. Des. Sci. 6, e26 (2020).

    Article 

    Google Scholar 

  • Yin, Y., Wang, P. & Childs, P. Understanding creativity process through electroencephalography measurement on creativity-related cognitive factors. Front. Neurosci. 16, 951272 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, Y., Zuo, H. & Childs, P. R. An EEG-based method to decode cognitive factors in creative processes. AI EDAM 37, e12 (2023).

    Google Scholar 

  • Zhao, M. et al. A tEEG framework for studying designer’s cognitive and affective states. Des. Sci. 6, e29 (2020).

    Article 

    Google Scholar 

  • Schoen, F., Lochmann, M., Prell, J., Herfurth, K. & Rampp, S. Neuronal correlates of product feature attractiveness. Front. Behav. Neurosci. 12, 147 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katona, J. Analyse the readability of LINQ code using an eye-tracking-based evaluation. Acta Polytech. Hung 18, 193–215 (2021).

    Article 

    Google Scholar 

  • Çavdaroğlu, B. & Atan, T. Integrated break and carryover effect minimization. J. Sched. 25(6), 705–719 (2022).

    Article 
    MathSciNet 

    Google Scholar 

  • Krigolson, O. E., Williams, C. C., Norton, A., Hassall, C. D. & Colino, F. L. Choosing muse: Validation of a low-cost, portable EEG system for ERP research. Front. Neurosci. 11, 109 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • García-Martínez, B., Martinez-Rodrigo, A., Alcaraz, R. & Fernández-Caballero, A. A review on nonlinear methods using electroencephalographic recordings for emotion recognition. IEEE Transact. Affect. Comput. 12(3), 801–820 (2019).

    Article 

    Google Scholar 

  • Seneviratne, U. Making sense of the EEG: From basic principles to clinical applications. CRC Press (2023).

  • MATLAB and Statistics Toolbox Release 2012, The MathWorks, Inc., Natick, Massachusetts, United States (2012).

  • Plöchl, M., Ossandón, J. P. & König, P. Combining EEG and eye tracking: Identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front. Hum. Neurosci. 6, 278. (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burger, C. & Van Den Heever, D. J. Removal of EOG artefacts by combining wavelet neural network and independent component analysis. Biomed. Signal Process. Control 15, 67–79 (2015).

    Article 

    Google Scholar 

  • López-Gil, J. M. et al. Method for improving EEG based emotion recognition by combining it with synchronized biometric and eye tracking technologies in a non-invasive and low cost way. Front. Comput. Neurosci. 10, 85 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brian Moore. PCA and ICA Package ( MATLAB Central File Exchange. Retrieved February 15, 2024. (2024).

  • Kocyigit, Y., Alkan, A. & Erol, H. Classification of EEG recordings by using fast independent component analysis and artificial neural network. J. Med. Syst. 32, 17–20 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Panigrahi, N., & Mohanty, S. P. Brain Computer Interface: EEG Signal Processing. CRC Press. (2022).

  • Karbauskaitė, R., Sakalauskas, L. & Dzemyda, G. Kriging predictor for facial emotion recognition using numerical proximities of human emotions. Informatica. 31(2), 249–275 (2020).

    Article 
    MathSciNet 

    Google Scholar 

  • Kirke, A., & Miranda, E. R. Combining eeg frontal asymmetry studies with affective algorithmic composition and expressive performance models (pp. 1–4). Ann Arbor, MI: Michigan Publishing, University of Michigan Library (2011).

  • Bakardjieva, E. & Kimmel, A. J. Neuromarketing research practices: attitudes, ethics, and behavioral intentions. Ethics Behav. 27(3), 179–200 (2017).

    Article 

    Google Scholar 

  • Alonso Dos Santos, M. & Calabuig Moreno, F. Assessing the effectiveness of sponsorship messaging: Measuring the impact of congruence through electroencephalogram. Int. J. Sports Market Spons. 19(1), 25–40 (2018).

    Google Scholar 

  • Ramirez, R., Palencia-Lefler, M., Giraldo, S. & Vamvakousis, Z. Musical neurofeedback for treating depression in elderly people. Front. Neurosci. 9, 354 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shapiro, K. L., Hanslmayr, S., Enns, J. T. & Lleras, A. Alpha, beta: The rhythm of the attentional blink. Psychon. Bull. Rev. 24, 1862–1869 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Touchette, B. & Lee, S. E. Measuring neural responses to apparel product attractiveness: An application of frontal asymmetry theory. Cloth. Text. Res. J. 35(1), 3–15 (2017).

    Article 

    Google Scholar 

  • Karbauskaitė, R., Sakalauskas, L. & Dzemyda, G. Kriging predictor for facial emotion recognition using numerical proximities of human emotions. Informatica 31(2), 249–275 (2020).

    Article 
    MathSciNet 

    Google Scholar 

  • Dufour, I. & Tzanetakis, G. Using circular models to improve music emotion recognition. IEEE Transact. Affect. Comput. 12(3), 666–681 (2018).

    Article 

    Google Scholar 

  • García-Martínez, B., Martinez-Rodrigo, A., Alcaraz, R. & Fernández-Caballero, A. A review on nonlinear methods using electroencephalographic recordings for emotion recognition. IEEE Transact. Affect. Comput. 12(3), 801–820 (2021).

    Article 

    Google Scholar 

  • Ekman, P. An argument for basic emotions. Cognit. Emot. 6(3–4), 169–200 (1992).

    Article 

    Google Scholar 

  • Schröder, M., & Cowie, R. Toward emotion-sensitive multimodal interfaces: The challenge of the European Network of Excellence HUMAINE in Adapting the interaction style to affective factors workshop in conjunction with user modeling (2005).

  • Ezugwu, A. E. et al. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 110, 104743 (2022).

    Article 

    Google Scholar 

  • Pınarcı, T. I. & Gülmez, N. U. Kadınların İç Mimarlık Mesleğine Yönelimi Üzerine Bir Araştırma. Tasarım + Kuram J 14(26), 36 (2018).

    Google Scholar 

  • Shin, J., Maeng, J., & Kim, D. H. Inner emotion recognition using multi bio-signals. In 2018 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia) (pp. 206–212). IEEE. (2018).

  • Saitis, C. & Kalimeri, K. Multimodal classification of stressful environments in visually impaired mobility using EEG and peripheral biosignals. IEEE Transact. Affect. Comput. 12(1), 203–214 (2018).

    Article 

    Google Scholar 

  • Burger, C. & van den Heever, D. J. Removal of EOG artefacts by combining wavelet neural network and independent component analysis. Biomed. Signal Proc. Contr. 15, 67–79. (2015).

    Article 

    Google Scholar 

  • Akhand, M. A. H. et al. Improved EEG-based emotion recognition through information enhancement in connectivity feature map. Sci. Rep. 13, 13804 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *